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It is over 10 years since the genome sequence of the first crop

was published. Since then, the number of crop genomes

sequenced each year has increased steadily. The amazing pace

at which genome sequences are becoming available is largely

due to the improvement in sequencing technologies both in

terms of cost and speed. Modern sequencing technologies allow

the sequencing of multiple cultivars of smaller crop genomes at a

reasonable cost. Though many of the published genomes are

considered incomplete, they nevertheless have proved a

valuable tool to understand important crop traits such as fruit

ripening, grain traits and flowering time adaptation.
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Introduction
Sequencing the Arabidopsis model plant genome in 2000

[1] was a major milestone not only for plant research but

also for genome sequencing. It was among the earliest

genomes from multicellular organisms to be completed,

and was sequenced by a large multinational consortium

to cope with this daunting effort. This hitherto unpre-

cedented resource invigorated and accelerated plant

research. The approach chosen relied on overlapping

bacterial artificial chromosomes (BAC) clones that

represent a minimal tiling path to cover each chromo-

some arm (Figure 1 left panel). The BAC sequences

were individually assembled and arranged according to

the physical map, creating a very high quality genome

sequence. The prohibitively high effort and time
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associated with this approach limited its applicability

to a few genomes. Nevertheless, only two years later,

the approximately three times larger genome of the first

crop plant, rice [2,3], was elucidated using the same BAC

based approach.

Poplar was the next crop genome sequenced and employed

the emerging whole genome shotgun (WGS) strategy [4].

Here, the genome is randomly broken down into smaller

pieces which are then sequenced and subsequently

assembled (Figure 1 middle panel). Whilst this strategy

significantly lowers preparation time and cost, the data are

more difficult to assemble and typically results in a more

fragmented genome sequence. The analysis of further crop

genomes employed both strategies, balancing the various

disadvantages and advantages. In 2007, the grapevine

genome sequence was published independently by two

different groups, both based on the WGS strategy. Whilst

one team focused on an inbred line [5], the other analysed a

heterozygous genotype used for actual wine production [6].

These data contributed to evidence suggesting that during

centuries of vegetative multiplication and exchange of

cultivars, a large number of synonyms and homonyms were

generated. These may or may not be genetically identical,

or may show clonal relationship with individual, phenoty-

pically highly relevant mutations. To distinguish them, it is

necessary to analyse multiple genomes from a single

species. Given the commercial importance of grapevines,

the genome sequence is exploited to understand grape

development, identify genetic factors affecting wine qual-

ity and produce genotypes that withstand the enormous

amount of fungicide required to allow harvest, and all that

whilst maintaining the individual quality of grapevine

cultivars.

Next generation sequencing comes to help —
but sometimes not
Although WGS reduced the time and effort required,

genome sequence generation was still expensive and

time-consuming due to the high cost of Sanger sequen-

cing. The adaptation of Next Generation Sequencing

(NGS) improved the output/cost ratio of genome sequen-

cing dramatically. NGS technology covers a broad range

of ‘post Sanger’ approaches, which sequence multiple

DNA fragments in parallel to yield a much larger number

of sequence reads, but generally of shorter length and

lower quality. The first NGS technology, 454, was based

on pyrosequencing and was initially suited mainly to

bacterial-sized genomes due to low data yield and

relatively short reads. Subsequent improvements in the
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Sequencing and assembly strategies. For BAC by BAC sequencing (left panel), the genome is split into a minimal tiling path consisting of BACs which

are then sequenced. In WGS (middle panel) the whole genome is sheared, sequenced and assembled. A relatively new technique, chromosome

sorting (right panel), is used to reduce the genomic complexity. The purified chromosomes can then be used for BAC by BAC or WGS sequencing.
technology enabled 454 sequencing to become applicable

also to more complex genomes in conjunction with San-

ger sequencing or alone.

Another early NGS technology was the sequencing by

synthesis based approach offered by Illumina. This

approach generated much greater data yields than 454,

albeit at the cost of even shorter reads. Since its introduc-

tion both read count and in particular read length

improved dramatically. Illumina sequencing was adopted

to sequence the cucumber [7], where it was combined

with conventional Sanger sequencing in a hybrid

approach, showing that this technology is a feasible

approach to plant genome sequencing.

The application of NGS to plant genomes then became an

increasingly strong trend. 454, which was applied in com-

bination with Sanger sequencing for the apple genome [8],

replaced Sanger sequencing as the primary data source for

the Cocoa genome [9] and muskmelon [10], although

Sanger sequenced BAC-end data were still required to

acquire long-distance structural information. The devel-

opment of moderate length (3–20 kbp) paired-end library

preparation techniques also helped compensate for the

shorter read length of NGS compared to Sanger.

It was not however until the woodland strawberry [11�]
that the first plant genome was sequenced using next
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generation sequencing alone, combing the 454, Illumina

and SOLID platforms. More recently, Illumina sequen-

cing emerged as the dominant NGS platform for genome

sequencing, providing the bulk of the data for recent

genomes such as Chinese cabbage [12], potato [13],

banana [14], chickpea [15], orange [16], pigeonpea [17]

and watermelon [18] and even the large genome of spruce

[19�] (see Figure 2 for a timeline putting genome

sequences into order).

Notably absent from these NGS success stories were the

Triticeae which include wheat, barley and rye and are

immensely important crops for animal feed and human

nutrition [20]. This is largely because Triticeae genomes

are notoriously difficult to access due to genome size and

the underlying complexity in terms of repetitive

sequences. With approximate sizes of 5 Gb, 8 Gb and

17 Gb for barley [21�], rye and bread wheat, respectively,

they exceed mammalian and other crop genomes by far.

In addition, bread wheat has an allohexaploid genome

structure with individual subgenomes being very similar

both at structural as well as at sequence level which poses

an additional barrier in accessing this genome.

For barley, wheat and rye, 80–90% of the genomes consist

of repetitive sequences distributed throughout the gen-

ome in highly similar copies and organized in long repeti-

tive arrays. For the moment, this repetitive ‘matrix’
www.sciencedirect.com
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Crop and plant genomes and their application. The figure gives the approximate timeline of when crop genomes were sequenced along with the

underlying techniques (Figure 1) and sequencing strategy used. Hybrid strategies which use BAC by BAC and WGS are indicated by the placement of

a genome twice. Also note that the distinction between pure NGS and Hybrid sequencing is sometimes arbitrary as many genome projects rely on

previously generated Sanger sequences. In addition, some major applications are marked by symbols: Grains for an improvement in grain quality, a

flower for flowering time and a tomato for a tomato ripening trait.
cannot be bridged by the read length of NGS techniques,

restricting assemblies to gene containing and low copy

regions and leaving intergenic and repetitive regions

largely un-assembled.

Still, remarkable progress in accessing the genomes and

‘gene-omes’ (i.e. the structured gene component of a

complex genome) has been made recently based on

Triticeae chromosome sorting (Figure 1 right hand

panel) [22�]. This method allows the purification  of

individual chromosomes which are subsequently used

as a template for shotgun sequencing or the construction

of BAC libraries. In case of barley, this approach has given

access to the ‘gene-ome’ (as well as repeat content) of all

seven barley chromosomes individually. Classical

physical map construction and sequencing of BACs

arranged in a tiling path are still required to unlock

Triticeae genomes completely. A powerful shortcut to

suitable genome data is the approximate ordering and

positioning of genes by using synteny information from

related grass (Poaceae) genomes. On the basis of the

complete sequenced model of grass genomes, namely
www.sciencedirect.com 
rice [2,3], Brachypodium distachyon [23] and sorghum [24],

synteny data allow the deduction of gene order and

finally an ‘assembled gene-ome’. This approach has been

pioneered in barley and has since been applied to rye-

grass [25�], wheat [26] as well as rye (Martis et al., under

revision).

Sequencing your own plant genomes?
Many of the major crops have been sequenced in recent

years, although quality and completeness vary. These

genome sequences provide an unprecedented resource

which can be exploited in numerous ways. Improve-

ments in NGS platforms now allow plant genomes of

up to about 1 Gbp to be coarsely assembled in a matter of

months at a modest cost given that they are mostly

homozygous and do not feature too many ‘difficult’ long

repetitive elements. Whilst insufficient for a high quality

assembly of a new species, these data are sufficient for re-

sequencing a close relative of an already sequenced

species, or for mapping and identification of a novel trait.

With the advent of the newest personal sequencers, such

as the MiSeq (Illumina Corp: 2� 300 bp read length; see
Current Opinion in Biotechnology 2014, 26:31–37
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the excellent field guide for an overview of NGS system

capabilities [27��]), such NGS capabilities are now turn-

ing classical labs into genome labs.

Despite the remarkable progress in sequencing tech-

nologies, highly repetitive and also heterozygous or

polyploid genomes still remain an issue. Current proto-

cols for generating long NGS libraries, which are necess-

ary to span repetitive elements frequently found in

plants, are laborious and expensive, and in addition

often give mixed results. The recent acquisition of

Moleculo by Illumina promises to deliver up to

10 kbp pseudo-reads which would greatly facilitate gen-

ome assembly and would be complementary to other

long range sequencing. Additionally, third generation

platforms are expected to provide longer reads which

can span repetitive elements. Typically, these technol-

ogies do not require prior DNA amplification, thereby

removing the clonal amplification bias that NGS suffers

from. Currently, the only third generation sequencer

available on the market is from PacBio. Though still

relatively new, the PacBio realtime sequencing tech-

nology promises mean read length of several thousand

bp, with the drawback of error rates much higher than

for Illumina sequencing. Nevertheless, this technology

already enables the assembly of bacterial genomes to a

single contig finished state in only a few days [28] and

the resulting reads can be corrected using, for example

Illumina reads [29].

What to do with all these data — is one
genome enough?
Although generally considered to be part of the genome

sequence, the generation of good gene models as a basis

for genome annotation is also a challenge. At present,

gene calling that includes alternative splicing and small

RNA genes is best achieved by combining intrinsic

evidence (de novo gene finding) with extensive extrinsic

evidence in the form of RNA data obtained from NGS

platforms. Also analysing close relatives or resequencing

multiple cultivars will further improve the depth by

which the genomes can be analysed. As an example,

the resequencing of >1000 wild and cultivated rice

accessions has been carried out and revealed thousands

of genes with lower diversity in cultivated rice which

helped localize the origin of rice domestication [30��,31].

When exploiting genomic data, special emphasis can be

directed to genes or gene families of interest (e.g. resist-

ance gene analogues) and these often vary among culti-

vars. Also, domestication genes can be moved in the focus

since they often have an impact on the optimization of

plant architecture which is another major component of

yield. Furthermore, the analysis of copy number variation

among and between species, which will become feasible

on the basis of a reference genome sequence and re-

sequencing data, will contribute to the understanding of

the mechanisms of heterosis [32].
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Resequencing leads to more informative and optimized

marker applications, enables and improves smart breed-

ing, and allows functional allele mining and SNP value

determination (coding SNPs opposed to intergenic

SNPs). By analysing more than a million SNPs per

genotype using NGS in a single measurement, breeders

are able to use approaches like genomic selection or

sequence based association studies. These developments

have the potential to cause conceptual changes in hybrid

breeding, and to perform genotyping by (population)

sequencing [33] as standard.

Genomes directly impacting crop research
Whilst there are still many crops to have their genomes

sequenced and many improvements to current genome

assemblies to be undertaken, it is already clear that crop

genomes have made a massive impact in a variety ways

(see Figure 2 for some of the highlights shown here). One

of the overwhelming uses of genomes is in the availability

of high-density molecular markers which can be used to

quickly map agronomically desirable traits and to identify

candidate genes within a region of interest. This can be

seen in the increased use of genomes for QTL mapping of

desirable traits even if only some sequence is available

[34]. These traits, once characterized, can then be bred

into elite varieties. High throughput genotyping by

sequencing are options for efficient marker assisted

breeding, for genomic selection, and for efficient man-

agement of genetic resources at a higher resolution than is

otherwise possible [35].

Once the rice genome became available, it was immedi-

ately used to help elucidate a major QTL for rice grain

production which was found to be a cytokinin oxidase

[36]. Interestingly, almost ten years later a transcription

factor controlling the expression of the gene was ident-

ified as DST [37]. This gene encodes a transcription

factor which had previously been shown to also regulate

drought and salt tolerance in rice [38]. Similarly, avail-

ability of the maize genome sequence [39] made it

possible to develop powerful haplotype maps [40] and

to find QTLs for biomass and bioenergy using whole

genome and metabolic prediction [41]. These examples

illustrate how a genome sequence can impact data

integration.

Within the Asterid branch, the tomato genome [42�] came

in a timely manner to identify an esterase responsible for

differences in volatile ester content in different tomato

species [43]. A gene underlying the uniformly ripening

locus in tomato was also identified which turned out to be

a Golden 2-like Transcription Factor which determines

chlorophyll distribution in unripe fruits [44��]. The gen-

ome together with the draft genome of its wild relative

Solanum pennellii illuminated the evolution of the terpene

biosynthesis [45�]. These new insights will undoubtedly

spur breeding towards improved quality crops.
www.sciencedirect.com
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Apart from crop yield (seed, grain, etc.), the control of

flowering and maturation time is a recurring interest, as it

represents an agronomical important trait for the adap-

tation to different photoperiod regimes and geographic

latitude. Thus, it is not surprising that the soybean

genome was used to unravel the maturity locus E1 which

has a major impact on flowering time [46]. This

represents an important trait for the adaptation to photo-

periods. Similarly, the potato genome sequence has

helped in the identification of a transcription factor

regulating plant maturity and life cycle [47��]. The sugar

beet genome was used to determine the biology of its

flowering time control [48]. For the latter, the hope is to

create a ‘winter beet’ which avoids bolting induction

during the winter, thereby providing a prolonged grow-

ing season with increased yields. Finally, in a large

genome wide association study in rice, flowering time

was one of the many identified traits for which a QTL was

found [49�].

Conclusion
Crop genome sequences, even at the current levels of

completeness, have had a major impact on crop

research/improvement in a relatively short time. The

‘success stories’ indicate that additional breakthroughs

are to be expected when sequencing multiple cultivars

or land-races. Since improvements in NGS in terms of

library preparation and sequence runs have seen a rapid

development in the last years, it will only be a matter of

time until sequencing smaller genomes for QTL and

genome wide association studies will become common-

place.

Together with deep phenotyping platforms which

promise to overcome the phenoytping bottleneck

[50,51], we can expect an even faster elucidation of

numerous QTL, but will be challenged with the sheer

magnitude of data available.
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Steuernagel B, Taudien S, Roessner S, Gundlach H et al.:
Unlocking the barley genome by chromosomal and
comparative genomics. Plant Cell 2011, 23:1249-1263.

One of several applications of chromosome sorting, a promising techni-
que which can be coupled with other ‘classical’ approaches and shows
promise in helping reducing the complexity of even the largest genomes.

23. International Brachypodium Initiative: Genome sequencing and
analysis of the model grass Brachypodium distachyon. Nature
2010, 463:763-768.

24. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J,
Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A et al.: The
sorghum bicolor genome and the diversification of grasses.
Nature 2009, 457:551-556.

25.
�

Pfeifer M, Martis M, Asp T, Mayer KFX, Lübberstedt T, Byrne S,
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